

From Malicious Eyes: A Method for Concise Representation

of Ad-Hoc Networks and Efficient Attack Survivability

Analysis

by Jaime C. Acosta

ARL-TR-6035 July 2012

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position

unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or

approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
White Sands Missile Range, NM 88002-5501

ARL-TR-6035 July 2012

From Malicious Eyes: A Method for Concise Representation

of Ad-Hoc Networks and Efficient Attack Survivability

Analysis

Jaime C. Acosta

Survivability/Lethality Analysis Directorate, ARL

Approved for public release; distribution is unlimited

ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and

Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no

person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

July 2012

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

October 2011–September 2012

4. TITLE AND SUBTITLE

From Malicious Eyes: A Method for Concise Representation of Ad-Hoc Networks

and Efficient Attack Survivability Analysis

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Jaime C. Acosta

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: RDRL-SLE-I

White Sands Missile Range, NM 88002-5501

8. PERFORMING ORGANIZATION

 REPORT NUMBER

ARL-TR-6035

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT

 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Ad-hoc networks are undergoing widespread use because they are able to provide capabilities that are infeasible with traditional

infrastructure networks such as adaptive topologies. With these capabilities, however, security risks and resource limitations are

introduced. Much work has focused on the development of security strengthening mechanisms such as secure routing protocols,

traffic encryption, distributed intrusion detection, and others. Many times, these methods are not feasible due to limitations of

available processing and power. In addition, it has long been known that security can never be guaranteed.

Alongside security analysis, survivability analysis focuses on the ability of network entities to function even during attacks.

While previous methods attempt to measure system tolerance as a whole, for example, average throughput over several

simulations, still missing are methods that are able to predict low-level attack impacts. Analysis of these low-level impacts

enables analysts to tune and redesign networks to optimize survivability. In this report, a dataset is collected and formatted into a

novel network representation. This representation is then used to build a classifier that accurately predicts link loss due to

spoofing and data forwarding attacks.

15. SUBJECT TERMS

MANET, attack survivability analysis, machine learning, network representation, ad-hoc routing attacks, risk analysis

16. SECURITY CLASSIFICATION OF:

17. LIMITATION

OF

 ABSTRACT

UU

18. NUMBER

 OF PAGES

38

19a. NAME OF RESPONSIBLE PERSON

Jaime C. Acosta
a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(575) 678-8115
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

List of Tables iv

Acknowledgments v

Summary vii

1. Introduction 1

2. Background 3

3. Preliminary Analysis 5

3.1 Emulation Environment ..5

3.2 Attack Development ..5

3.3 Observations ..6

4. Data Collection 6

4.1 Scenario Generation ..6

4.2 Log Data Collection ..10

5. Network Representation 11

6. Evaluation 13

7. Results 14

8. Conclusions and Future Work 22

9. References 23

List of Symbols, Abbreviations, and Acronyms 26

Distribution List 27

iv

List of Figures

Figure 1. A sample ad-hoc network. Nodes in the network are routers (blue cylinders are
legitimate while the red cylinder is compromised) that are connected (green lines) to
other nodes as decided by the routing protocol. ..1

Figure 2. Spoofing attack pseudo code. ..6

Figure 3. configGen script pseudo code ..7

Figure 4. Chain topology. ...8

Figure 5. Connected grid topology. ..8

Figure 6. Cycle topology...8

Figure 7. Star topology. ..8

Figure 8. Tree topology...9

Figure 9. Two-centroid Topology. ..9

Figure 10. Wheel topology. ..9

Figure 11. Attacker log tshark flags. ...10

Figure 12. Non-Attacker log mgen flags. ..11

Figure 13. Representation by hops. Hop counts are labeled in parentheses and dotted lines
indicate traffic. ...12

Figure 14. OLSR Forwarding survivability model. ..16

Figure 15. OLSR Spoofing survivability model part 1. ..17

Figure 16. OLSR Spoofing survivability model part 2. ..18

Figure 17. OLSR Spoofing survivability model part 3. ..19

Figure 18. OSPFv3MDR Forwarding survivability model...20

Figure 19. OSPFv3MDR Spoofing survivability model part 1. ...20

Figure 20. OSPFv3MDR Spoofing survivability model part 2. ...21

List of Tables

Table 1. Traffic Data flows between nodes. Column 1 indicates the source node while
columns 2 and 3 indicate the nodes being sent TCP and UDP packets respectively..............10

Table 2. Network representation parameters. ...12

Table 3. Percentage of flows that conflicted per protocol. ...15

Table 4. Weighted averages for classification of duringLinkLost with OLSR.15

Table 5. Weighted averages for classification of duringLinkLost with OSPFv3MDR.15

v

Acknowledgments

I would like to thank Ernie Martinez and David Nevarez for their help with the attacks. I would

also like to thank Naval Research Laboratory and the developer’s of the common open research

emulator (CORE) for their feedback during this research.

vi

INTENTIONALLY LEFT BLANK.

vii

Summary

As part of its mission, the U.S. Army Research Laboratory/Survivability Analysis Directorate

(ARL/SLAD) evaluates government technologies and provides guidance to ensure maximum

system security in the areas of tamper protection, reverse engineering protection, and

vulnerability detection and protection among others. As part of these efforts, network

survivability is a critical element. Field testing is extremely costly and time consuming. As a

result, emulation has become an important analysis resource. In order for ARL/SLAD to provide

accurate and efficient survivability analysis, state-of-the-art emulation tools must be adopted and

expertise in their design and use is critical. More importantly, research and development of

methods that improve efficiency, analysis capability, and use of the scientific method is

paramount to the ARL/SLAD mission.

In this report, the notion of attack survivability prediction is introduced. The report provides

evidence showing that emulation runtime logs and a carefully designed network representation

enable analysts to predict communication flows that are affected by network attacks such as

spoofing and data forwarding.

Current methods of survivability analysis do not generalize across scenarios, provide low-fidelity

results, and lack scientific backing. The following contributions are made in this report.

1. A network representation is presented that captures the data flows and routes of a wireless

ad-hoc network throughout a simulation or emulation. The network representation is

concise because it is based on the attacker’s view of the network and consists of only 22

parameters.

2. The network representation is evaluated using the common open research emulator

(CORE) with several scenarios. Experiments using optimized link state routing (OLSR)

and OSPFv3MDR were conducted and 10 fold-cross validation shows that link loss due to

spoofing and data forwarding attacks can be accurately predicted, above 97 percent true

positive rate and 10 percent false positive rate, across seven distinct scenarios.

viii

INTENTIONALLY LEFT BLANK.

1

1. Introduction

Many wireless technologies rely on centralized infrastructures to provide services such as public

Internet access. Infrastructure-less or ad-hoc networks are meant to serve different purposes.

These networks enable wireless entities to communicate over long distances without the need for

centralized management. Ad-hoc networks are designed to adapt to environmental changes and

require low maintenance. Ad-hoc networks have numerous applications spanning many diverse

fields; these applications include military field exercises, intelligent transportation,

environmental monitoring, and others (1). Figure 1 illustrates an example ad-hoc network.

Figure 1. A sample ad-hoc network. Nodes in the network are routers (blue cylinders are legitimate

while the red cylinder is compromised) that are connected (green lines) to other nodes as

decided by the routing protocol.

Given the increase in the capabilities and the wide use of wireless networks, privacy and security

has become a critical research focus. In particular, the benefits of ad-hoc networks introduce

additional security vulnerabilities, resource constraints, and performance limitations.

2

Many have investigated the attacks that are associated with ad-hoc networks. Attacks are

classified as passive or active. Passive attacks include eavesdropping, traffic analysis, and

monitoring. Active attacks include jamming, spoofing, modification, replaying, and denial of

service (2).

As a result, countermeasures have been developed, such as distributed intrusion detection, trust

management, secure routing protocols, and others. It is well known that ensuring complete

security is not feasible. In the field of survivability, research focus lies on improving critical

systems’ tolerance to incidents.

In the past, several methods have been used to test wireless ad-hoc networks. It can be observed

from figure 1 that visual inspection alone is not suitable for analyzing ad-hoc networks as they

can become very complex. Field testing, where actual hardware and software are tested in real

environments, is non-trivial and costly. Static analysis, such as model checking and proof-based

techniques are rigorous, complex, and limited to small non-mobile systems. Current simulation

and emulation techniques are useful because they allow analysts to design and test particular

scenarios using a combination of software and hardware to draw conclusions from empirical

evidence. The problem with current simulation and emulation methods is that results are specific

for the scenarios under test. Traditionally, analysts run several instances consisting of different

attack and topology parameters. These parameters are mostly chosen at random. This task can

become very time consuming, especially when using emulation to provide more accurate results.

Lacking are methods that learn from previous executions in order to predict survivability. In this

report, I provide the following contributions.

1. A network representation that captures the data flows and routes of a wireless ad-hoc

network throughout a simulation or emulation. The network representation is concise

because it is based on the attacker’s view of the network.

2. The network representation is evaluated using common open research emulator (CORE)

with several scenarios. Experiments using OLSR and OSPFv3MDR were conducted and 10

fold-cross validation shows that link loss due to spoofing and data forwarding attacks can

be accurately predicted across seven distinct scenarios.

The report is organized as follows.

1. A background of wireless ad-hoc networks is given.

2. I provide a preliminary analysis that led to this work.

3. The data collection method and the network representation parameters are described.

4. The evaluation follows by presenting the experimental procedure and results.

5. I conclude and offer prospective extensions to this work.

3

2. Background

Wireless ad-hoc networks are used when communicating entities must be able to adapt in

dynamic, long-range environments without the need of a static infrastructure for packet routing

decisions. These systems are many times limited in resources, such as electrical and

computational power. For these systems to work, the underlying communication relies on

efficient, reliable, ad-hoc routing protocols. While there has been much work evaluating the

performance of these protocols (3–5), security and survivability of these networks has recently

become a strong research focus.

Attacks that exist in infrastructure networks may be more difficult to detect in wireless ad-hoc

networks. Ad-hoc networks are also susceptible to a broader range of attacks; (2) describes such

attacks. Wireless ad-hoc networks rely heavily on routing for communication; therefore, there

has been much focus on routing protocol security.

Some techniques for analyzing the security of routing protocols are exhaustive (6). These

techniques attempt to represent a system using mathematics, and then attempt to prove security

goals. In these cases, invalid states indicate malicious activity. There are several limitations to

techniques. They are unable to cover all conditions, especially in large and mobile systems.

Evaluation often requires rigorous analysis of the specification and sometimes conversion to

specialized formats. As with any security evaluation technique, exhaustive approaches are prone

to false positives in real environments, which may be caused by legitimate system failures.

Recently, there has been an interest in the development of secure protocols, which are designed

with security in mind. These protocols contain logic to prevent malicious activity. Common

techniques used for ensuring security include cryptographic primitives, (7–10), and obfuscation

approaches, for example, multipath routing partitions data and sends packets through several

(possibly non-optimal) paths (11, 12). Secure protocols are not without limitations; these

techniques introduce overhead that may not be feasible in some systems due to electrical power

and computational constraints. Changing the underlying routing protocol in large legacy systems

may be costly.

A non-exhaustive method for evaluating the security of routing protocols is simulation. Using

this approach, the security of a network is measured by configuring multiple scenarios with

varying conditions, such as topology and routing protocol. During the scenarios, a simulated

attack is executed and performance attributes (delay, throughput, goodput, etc.) are measured

(13–15, 6). Although not exhaustive, well-designed simulations may be a credible source for

evaluating security (16). Drawbacks of this approach include inaccuracies due to the fact that the

network stack and running processes are simulated. To account for this limitation, emulation,

which is capable of executing real binaries in actual runtime environments (operating system,

4

network stack, etc.), is sometimes used for evaluation. In either case, in addition to being non-

exhaustive, results from the previous work do not generalize to untested scenarios. Regardless of

the evaluation techniques used, due to factors such as field environment, protocol

implementation, malicious insiders, user error, etc., unconditional security is not guaranteed.

While security evaluation methods focus on attack prevention and reaction, survivability

techniques also take into account tolerance (17). Survivability measures how well systems can

operate during attacks, intrusions, failures or accidents (18). This is useful, for example, when

considering networks with critical data. In this case, attacks on nodes in the critical data path

would likely have higher impact on the system survivability.

Much research has looked at improving survivability by introducing tolerant routing methods,

which may either replace or execute alongside current protocols (17). Regarding survivability

evaluation, usually either full enumeration is attempted or the monte carlo method is used (19–

21). These approaches are infeasible with large mobile systems and results do not generalize

across to unseen scenarios. Recent methods use machine learning to predict system survivability

(22). Survivability measurement parameters such as number of critical links and number of

surviving paths are averaged over multiple executions. This low-fidelity approach limits further

analysis of details that could improve generalization across scenarios and help fine-tune systems

for improved survivability.

The method presented in this report uses an attacker-focused representation of ad-hoc networks

(network states) that enables accurate prediction of link loss between nodes given real-world

attacks. This allows analysts to determine vulnerable network states that are critical during a

scenario, and identify alleviations that may result by re-positioning, modifying critical data

paths, changing protocols, etc. Network states consist of parameters collected from route dumps

and observed traffic flows and were defined based on emulation experimentation.

5

3. Preliminary Analysis

3.1 Emulation Environment

It was apparent after reviewing the literature that there was a need for a method that could

provide survivability prediction for ad-hoc networks. The first step towards developing such a

method was to determine how systems, real-world software and hardware, behave when

subjected to different attacks. CORE (23) was used as the emulation platform for the following

reasons:

• Open source: Besides being free, it is also possible to modify and conduct deep analysis of

the emulator internals.

• Extensible: Through its plugin architecture, in-house and third party developed components

such as EMANE (24) for layer 1 and layer 2 emulation and CommEffect (25) for emulating

real-work communication effects are loadable modules. A developer can also implement

custom radio models.

• Maintained: Releases and bug fixes are ongoing. A user’s and developer’s mailing list

allows the community to ask questions.

• Accurate: Network layers 3 and above run in a virtualized Linux environment. Each node

runs real binaries and has a real network stack.

• Flexible: Features such as hardware-in-the-loop allow connectivity with real devices.

Multiple instances of CORE allow scalability, which is essential for large networks.

3.2 Attack Development

After choosing the emulation platform, the next step was to observe the impact of network

attacks on nodes. Out of the box, CORE provides several routing protocols including Quagga’s

OSPFv3MDR for wireless ad-hoc networks. To broaden the scope of the analysis, NRLOLSR

was additionally installed. Two attacks were implemented, namely spoofing and data forwarding,

which are well-known in the security community (2). These were chosen because they require

only basic networking knowledge; they do not require an understanding of underlying

algorithms.

The pseudo code for the spoofing attack is provided in figure 2. The spoofing attack takes as

input an Internet Protocol (IP) address that will be spoofed. If the OSPFv3MDR protocol is in

place, the attack creates a virtual interface and assigns it the IP address of the victim. If OLSR is

used, in addition to starting the virtual interface, since multiple interfaces are not supported with

NRLOLSR, the attacker broadcasts itself as a host network announcement (HNA) gateway with

the IP address of the victim. In the latter case, the routing daemon requires a restart.

6

Figure 2. Spoofing attack pseudo code.

The data forwarding attack simply drops all data packets that are meant for outside nodes.

Control packets are still forwarded. To implement the data forwarding attack the kernel IP

forwarding variables (net.ipv4.conf.all.fowarding and net.ipv6.conf.all.fowarding) are set to 0.

This process is the same regardless of the protocol used and does not require restarting any

processes.

3.3 Observations

Informal testing with several scenarios using transmission control protocol (TCP) and user

datagram protocol (UDP) traffic provided limited evidence that during attacks, the

communication near the attacker are impacted more often. More specifically, it seemed as

though impact was related to distance and flow, based on the attacker’s relative location. To

investigate this further, I generated an experimentation platform which consists of automated

data collection and a network representation focused on the attacker’s perspective of the

network.

4. Data Collection

Two main components are necessary for the collection of data. Scenario generation is associated

with configuration parameters for CORE executions. Log generation is associated with the data

collected by individual nodes during each execution.

4.1 Scenario Generation

CORE allows analysts to design and run network scenarios using a graphical interface.

Generating topologies is a trivial task that works by dragging and dropping icons into a

workspace. Scenario parameters such as node positions, protocols used, and custom processing

(such as logging and attacker) scripts are stored in a configuration file. A dataset was generated

if olsr daemon is running

stop olsr daemon

start virtual interface with $ipToSpoof

restart olsr daemon with HNA

sleep $duration

stop olsr daemon

stop virtual interface

restart olsr daemon without HNA

else

start virtual interface with $ipToSpoof

sleep $duration

stop virtual interface

7

by running several scenarios. Each scenario used different parameter values. This was

accomplished by implementing a configuration generator, configGen. Pseudo code for configGen

is provided in figure 3.

Figure 3. configGen script pseudo code

The parameters that were varied with each emulation instance are discussed below

Routing protocol. This is the underlying layer 3 protocol that will be used to communicate data

necessary for route maintenance. The dataset contains OLSR and OSPFv3MDR protocols. Both

of these protocols are proactive meaning that they continually publish route information, as

opposed to reactive protocols, which publish route information when requested. The OLSR

implementation is provided by NRL and uses IPv4 addressing. OSPFv3MDR is part of the

Quagga suite of protocols. OSPFv3MDR is a modification of OSPF that is optimized for mobile

ad-hoc networks. OSPFv3MDR uses IPv6 addressing.

Topology. In attempts to achieve a suitable data distribution, rather than using randomly

generated topologies, which are sometimes either too sparse or compressed, 10 nodes were used

to populate 7 different static topologies. The topologies were generated by first manually

positioning nodes to fulfill the desired connectivity. Next, the position values were hardcoded

into the configGen script. Figures 4−10 are graphical portrayals of the topologies. The topologies

are labeled chain, connected grid, cycle, star, tree, two-centroid, and wheel.

for attackNode in 1…10

for topology in “chain” “connected_grid” “cycle” “star” “tree” “two-centroid” “wheel”

 for protocol in “OLSR” “OSPFv3MDR”

 for attack in “forwarding” “spoofing”

 runScenario($attackNode,$topology,$protocol,$attack)

8

Figure 4. Chain topology. Figure 5. Connected grid topology.

Figure 6. Cycle topology. Figure 7. Star topology.

9

Figure 8. Tree topology. Figure 9. Two-centroid Topology.

Figure 10. Wheel topology.

Eventually, this work will investigate whether survivability predictions extend to mobile

scenarios. At first glance, it seems likely; when nodes move, the topologies change. It may be the

case that survivability predictions can be made for each topology formed during the movement.

Attack. The types of attacks are spoofing and forwarding, as described in the previous section.

For the automated process, the attack scripts take additional inputs, start time and duration.

Attack node number. This indicates which of the 10 nodes in the scenario will issue an attack.

Parameters that were controlled across all emulation instances are discussed below.

Attack time. This parameter indicates how long a node must wait before executing the attack.

This is set to 60 seconds.

10

Scenario duration. Each scenario is broken into three phases―before, during, and after an

attack was issued. Each scenario is 3 min long, divided into 60 s phases.

Data flow. During each scenario, nodes communicate using TCP and UDP data packets. Packets

are 1280 bytes in size and are sent 50 times per second. The traffic is generated using mgen (26).

Each node opens six sockets, three outgoing and three incoming. Table 1 contains the data flows

that are used during each instance.

Table 1. Traffic Data flows between nodes.

Column 1 indicates the source node

while columns 2 and 3 indicate the nodes

being sent TCP and UDP packets respectively.

Node

TCP

Outgoing

UDP

Outgoing

1 10 2,3

2 1 3,4

3 2 4,5

4 3 5,6

5 4 6,7

6 5 7,8

7 6 8,9

8 7 9,10

9 8 10,1

10 9 1,2

Attack Duration. The duration of attack is a constant 60 seconds.

4.2 Log Data Collection

During each scenario all nodes log incoming data. Depending on the type of node (legitimate or

attacker), different attributes are logged.

Attacker Node Logs

Attacker nodes run the tshark process using the following flags shown in figure 11:

Figure 11. Attacker log tshark flags.

The output from tshark is piped into a python script. Each second, the collected data are averaged

and written to memory. The attributes collected by the attacker are listed below.

Time. The time stamp indicating when the data are captured.

tshark -i <ifx> -T fields -E separator=, -e frame.time_epoch -e frame.len -e

frame.protocols -e ip.src -e ip.dst –e ipv6.src -e ipv6.dst -e tcp.srcport -e tcp.dstport

-e udp.srcport -e udp.dstport -l

11

Flows. This attribute contains information about promiscuous traffic that is seen passing through

the attacker node. This does not include packets where the attacker is either the source or

destination IP address. The flows contain either TCP or UDP as the traffic type. The hop count

from the attacker to the source address and the hop count from the attacker to the destination

address are also captured.

Routes. A dump of the routing tables using the Linux route command.

Attack running. The name of the attack that is currently running; if no attack is running, this

attribute is empty.

Legitimate Node Logs

Traffic flows are generated using mgen. Features of mgen allow trivial collection of statistics

such as delays (using timestamps within messages), and number of received, missed and out of

order packets (using sequence numbers). mgen is executed with the following flags shown in

figure 12.

Figure 12. Non-Attacker log mgen flags.

Legitimate nodes log routes, timestamps, and the attack running in the same way as the attacker.

The attack running attribute in the legitimate node logs is used solely for synchronization

purposes. Flows are collected in a similar fashion as the attacker, except that IP addresses are

used instead of hops. All of these attributes are logged to a file and used later to form a network

state from the attacker’s viewpoint, as described in the next section.

5. Network Representation

As the number of nodes in a network increases, so does the complexity of analyzing the impact

of an attack on the network. Part of the reason for this lies in the fact that representing a network

and the traffic flows is difficult and easily fall victim to state-space explosion.

To avoid this, instead of representing the network as a collection of source and destination IP

addresses, the distance (hops) from the attacker’s location are used. Figure 13 shows an example

of this. In the sample, node n1 is sending packets to n3 and n3 is sending packets to n4 (denoted

by dotted lines). From the attacker’s view, the n1 to n3 communication is seen as hop (1) to hop

(1) with passthrough. The n3 to n4 communication is seen as hop (1) to hop (2) with no

passthrough.

mgen flush input <pathToFlow> output /dev/null

12

Figure 13. Representation by hops. Hop counts

are labeled in parentheses and dotted

 lines indicate traffic.

The network representation is defined as the collection of flow descriptions over an entire

emulation instance. Flow descriptions are composed of the parameters in table 2. These flow

descriptions were captured by fusing the legitimate and attacker log files. Log files are

synchronized using the attack name.

Table 2. Network representation parameters.

Attribute Description Capture Source

1 fromHop Hops from the attacker node to the source. LegFlw+AttRte

2 toHop Hops from the attacker node to the destination. LegFlw+AttRte

3 dataType Data, not control, packet type. Leg Flw

4 distanceTraveled Hops from source to destination. Leg Flw

5 passThrough Whether this flow pass through the attacker. LegFlw,Rte+AttRte

6 beforeStats Mgen data before an attack. Leg Flw

7 duringStats Mgen data during an attack. Leg Flw

8 afterStats Mgen data after an attack. Leg Flw

9 attackName Spoofing or forwarding indicator. Leg+Att

10 duringLinkLost Whether a link is lost during an attack. LegFlw

11 srcIsSpoofed Whether the source address is spoofed. LegFlw+AttRte

12 destIsSpoofed Whether the destination address is spoofed. LegFlw+AttRte

13 hopsSpoofedToDest Hops from the spoofed to the destination. LegFlw+AttRte

14 spoofedBetweenAttacker Whether the spoofed is between the attacker and the

destination.

LegFlw,Rte+AttRte

15 spoofedBetween AttackerGW Whether the spoofed is a gateway (directly

connected) node on the path to the destination.

LegFlw,Rte+AttRte

16 destBetween

SpoofedAndAttacker

Whether the destination is between the spoofed and

the attacker.

LegFlw,Rte+AttRte

17 destBetween

SpoofedAndAttackerGW

Whether the destination is a gateway node on the

path to the attacker.

LegFlw,Rte+AttRte

18 attackerBetween

SpoofedAndDest

Whether the destination is between the spoofed and

the attacker.

LegFlw,Rte+AttRte

19 attackerBetween

SpoofedAndDestGW

Whether the destination is a gateway node on the

path to the attacker.

LegFlw,Rte+AttRte

20 srcBetween SpoofedAndDest Whether the destination is between the spoofed and

the attacker.

LegFlw,Rte+AttRte

21 srcBetween

SpoofedAndDestGW

Whether the destination is a gateway node on the

path to the attacker.

LegFlw,Rte+AttRte

22 altPathWithoutAttacker Whether an alternate path between source and

destination exists without the attacker.

LegFlw,Rte+AttRte

13

In table 2, parameters with a capture source value Leg Flw are taken from the flows in the

legitimate log file. More specifically, parameters 6−8 encapsulate information about missed, out

of order, and total packets received along with delays. The Leg Flw+Att Rte value indicates that

the parameters are captured by using the IP addresses in the legitimate log file flows. Next these

are cross-referenced with the routes in the attacker log file. The LegFlw,Rte+AttRte capture

sources are obtained by first identifying a flow from the legitimate log file. Paths are traced by

iteratively following the gateway nodes, provided by the routes in the log files. As a special case,

parameter 22 is derived by using the python networkx package (27). Using networkx, a graph

data structure is built from node connections as given by route tables. The existence of an

alternate path is determined after deletion of the attacker node in the data structure. In the case of

forwarding attacks, parameters 11–22 are always false.

The selection of parameters was an iterative process. Initially only parameters 1–10 were used;

the others were chosen after a deeper analysis. This deeper analysis consisted of the several

steps. First, the data were captured and represented using the initial parameters. A python script,

conflictDetect.py, generated a hash table or dictionary using all parameters, except

duringLinkLost, as keys in the key/value pair. The Boolean parameter (taking on either true or

false) duringLinkLost was the value in the key/value pair. The python script went through each

network representation. If a collision was found and duringLinkLost differed, these were

considered conflicting flows.

For each conflicting flow, the number of times that the duringLinkLost parameter resulted as true

and false was stored. In the case where there was an equal amount of true and false counts, the

emulation instances associated with the flows were run again. In the case where the counts were

not equal, the emulation instances associated with the minority were run again. Sometimes the

emulation instance encountered an unknown error and all links randomly disconnected.

More often, the reason for the conflicts resulted due to a lack of representation of some network

characteristic. Analysis of these cases led to the additional parameters 11−20. The network

representation was used to train a classifier to predict network survivability, specifically the

duringLinkLost parameter.

6. Evaluation

An experiment was conducted to validate the hypothesis that survivability of links in a network

under spoofing and forwarding attacks can be predicted. The experiment used the dataset

described in the Data Collection Section (section 4). The dataset was formatted into the network

representation described in the Network Representation (section 5).

14

To determine the quality of the network representation, the numbers of conflicts (as described in

the Network Representation (section 5) were counted. Next, a predictor was built using REPTree

as implemented in the WEKA (28) data-mining toolset. The test method used was 10 fold cross-

validation, with this method 90% of the data are set as training to predict the remaining 10%.

This process is repeated 10 times using different portions of data.

A subset of the parameters was used as training attributes to predict duringLinkLost. Initially,

parameters 1−5 and 9 were used (called the partial set) and then parameters 11−22 were added

(called the all set) to determine improvements. Attributes 7 and 8 were not predicted because the

purpose of this experiment was to determine if link loss can be predicted, not to determine

numeric degradation. This would require more varied flow characteristics (in the current dataset

all flows are equal in rate and size).

In general, the dataset used for evaluation consists of all combinations of the following

configurations:

• Routing Protocols: OSPFv3MDR, OLSR

• Topologies: chain, connected_grid, cycle, star, tree, two-centroid, and wheel

• Attacks: forwarding, spoofing

Additionally, there are 10 nodes with 3 outgoing connections (2 UDP and 1 TCP). Each

emulation instance contains one attacking node selected using a round-robin approach. In total

there are 32626 flows, 17251 with OLSR and 15375 with OSPFv3MDR. There were a total of

3115 unique flows with OLSR and 2526 with OSPFv3MDR. In very few cases, a malfunction in

CORE caused some nodes to stop capturing data; as a result, the dataset contains a small amount

of noise.

7. Results

Table 3 shows only a small percentage of the flows in the dataset conflicted. This is strong

evidence that a classifier can be derived that will predict, given the network representation,

whether certain connections will be lost when a forwarding attack or a spoofing attack occur.

Reasons for the conflicts at the time of this writing may be due to malfunctions in the emulator

or it may be the case that further venturing into the specifics of the routing protocol is required

(route ordering, source code investigation, etc.).

15

Table 3. Percentage of flows that conflicted per protocol.

Protocol Attack
%

Conflict

OLSR
Forwarding 0.06

Spoofing 2.00

OSPFv3MDR
Forwarding 0.00

Spoofing 0.03

Four REPTree classifiers were trained (OLSR forwarding, OLSR spoofing, OSPF forwarding,

OSPF spoofing) using 10 fold cross-validation. Tables 4 and 5 contain the results for OLSR and

OSPF configuration respectively.

Table 4. Weighted averages for classification of duringLinkLost with OLSR.

Attack Parameters Used True Positive False Positive F-Measure

Forwarding
Partial 0.998 0.018 0.998

All 0.998 0.018 0.998

Spoofing
Partial 0.975 0.161 0.975

All 0.983 0.103 0.983

Table 5. Weighted averages for classification of duringLinkLost with OSPFv3MDR.

Attack Parameters Used True Positive False Positive F-Measure

Forwarding
Partial 1 0 1

All 1 0 1

Spoofing
Partial 0.997 0.248 0.991

All 0.998 0.031 0.998

The results using cross-validations are a good indication that the classifier will do well with

unseen scenarios. In the case of OLSR, although there were a higher number of conflicts, the

REPTree still performed reasonably well. Using the full set of parameters generally improved the

prediction, reducing the false positives, of spoofing impacts.

An interesting note is that when attempting to augment the training set with parameter 6 (before-

attack statistics) the classifier did not improve.

The generated predictor models using all parameters are provided in figures 14–20. The

predicting link survivability during forwarding attacks is trivial; however, this is not the case

with spoofing attacks.

16

Figure 14. OLSR Forwarding survivability model.

passthrough = true : true

passthrough = false

| distance = 1 : false

| distance = 2 : false

| distance = 3

| | type = TCP

| | | toHop = 1

| | | | fromHop = 1 : false

| | | | fromHop = 2 : true

| | | | fromHop = 3 : false

| | | | fromHop = 4 : false

| | | | fromHop = 5 : false

| | | | fromHop = 6 : false

| | | | fromHop = 7 : false

| | | | fromHop = 8 : false

| | | | fromHop = 9 : false

| | | | fromHop = 10 : false

| | | toHop = 2 : false

| | | toHop = 3 : false

| | | toHop = 4 : false

| | | toHop = 5 : false

| | | toHop = 6 : false

| | | toHop = 7 : false

| | | toHop = 8 : false

| | | toHop = 9 : false

| | | toHop = 10 : false

| | type = UDP : false

| distance = 4 : false

| distance = 5 : false

| distance = 6 : false

| distance = 7 : false

| distance = 8 : false

| distance = 9 : false

| distance = 10 : false

17

Figure 15. OLSR Spoofing survivability model part 1.

destSpoofed = true

| isDstBetweenSpoofedAndAttacker = true

| | toHop = 1

| | | fromHop = 1 : false

| | | fromHop = 2 : false

| | | fromHop = 3 : true

| | | fromHop = 4 : true

| | | fromHop = 5 : true

| | | fromHop = 6 : false

| | | fromHop = 7 : false

| | | fromHop = 8 : false

| | | fromHop = 9 : true

| | | fromHop = 10 : false

| | toHop = 2 : false

| | toHop = 3 : false

| | toHop = 4 : false

| | toHop = 5 : false

| | toHop = 6 : false

| | toHop = 7 : false

| | toHop = 8 : false

| | toHop = 9 : false

| | toHop = 10 : false

| isDstBetweenSpoofedAndAttacker = false

| | fromHop = 1 : true

| | fromHop = 2

| | | toHop = 1 : true

| | | toHop = 2

| | | | distance = 1 : false

| | | | distance = 2

| | | | | type = TCP : true

| | | | | type = UDP

| | | | | | isDstBetweenSpoofedAndAttackergw = true : false

| | | | | | isDstBetweenSpoofedAndAttackergw = false : true

| | | | distance = 3 : true

| | | | distance = 4 : false

| | | | distance = 5 : false

| | | | distance = 6 : false

| | | | distance = 7 : false

| | | | distance = 8 : false

| | | | distance = 9 : false

| | | | distance = 10 : false

| | | toHop = 3 : true

| | | toHop = 4 : true

| | | toHop = 5 : true

| | | toHop = 6 : true

| | | toHop = 7 : true

| | | toHop = 8 : true

| | | toHop = 9 : true

| | | toHop = 10 : true

| | fromHop = 3 : true

| | fromHop = 4 : true

| | fromHop = 5 : true

| | fromHop = 6 : true

| | fromHop = 7 : true

| | fromHop = 8 : true

| | fromHop = 9 : true

| | fromHop = 10 : true

18

Figure 16. OLSR Spoofing survivability model part 2.

destSpoofed = false

| srcSpoofed = true

| | type = TCP

| | | spoofedBetweenAttackergw = true : false

| | | spoofedBetweenAttackergw = false

| | | | toHop = 1 : true

| | | | toHop = 2

| | | | | fromHop = 1 : true

| | | | | fromHop = 2

| | | | | | distance = 1 : false

| | | | | | distance = 2 : true

| | | | | | distance = 3 : true

| | | | | | distance = 4 : true

| | | | | | distance = 5 : false

| | | | | | distance = 6 : false

| | | | | | distance = 7 : false

| | | | | | distance = 8 : false

| | | | | | distance = 9 : false

| | | | | | distance = 10 : false

| | | | | fromHop = 3 : true

| | | | | fromHop = 4 : true

| | | | | fromHop = 5 : true

| | | | | fromHop = 6 : true

| | | | | fromHop = 7 : true

| | | | | fromHop = 8 : true

| | | | | fromHop = 9 : true

| | | | | fromHop = 10 : true

| | | | toHop = 3 : true

| | | | toHop = 4 : true

| | | | toHop = 5 : true

| | | | toHop = 6 : true

| | | | toHop = 7 : true

| | | | toHop = 8 : true

| | | | toHop = 9 : true

| | | | toHop = 10 : true

| | type = UDP

| | | passthrough = true : true

| | | passthrough = false : false

| srcSpoofed = false

| | distance = 1 : false

| | distance = 2 : false

| | distance = 3 : false

| | distance = 4

| | | hopsToSpoofed = 0 : false

| | | hopsToSpoofed = 1

| | | | passthrough = true

| | | | | isDstBetweenSpoofedAndAttacker = true : true

| | | | | isDstBetweenSpoofedAndAttacker = false

| | | | | | spoofedBetweenAttackergw = true : true

| | | | | | spoofedBetweenAttackergw = false : false

| | | | passthrough = false : false

| | | hopsToSpoofed = 2 : false

| | | hopsToSpoofed = 3 : false

| | | hopsToSpoofed = 4 : false

| | | hopsToSpoofed = 5 : false

| | | hopsToSpoofed = 6 : false

| | | hopsToSpoofed = 7 : false

| | | hopsToSpoofed = 8 : false

| | | hopsToSpoofed = 9 : false

| | | hopsToSpoofed = 10 : false

19

Figure 17. OLSR Spoofing survivability model part 3.

| | distance = 5

| | | hopsToSpoofed = 0 : false

| | | hopsToSpoofed = 1

| | | | passthrough = true

| | | | | isDstBetweenSpoofedAndAttacker = true : true

| | | | | isDstBetweenSpoofedAndAttacker = false

| | | | | | spoofedBetweenAttacker = true : false

| | | | | | spoofedBetweenAttacker = false : true

| | | | passthrough = false : false

| | | hopsToSpoofed = 2 : false

| | | hopsToSpoofed = 3 : false

| | | hopsToSpoofed = 4 : false

| | | hopsToSpoofed = 5 : false

| | | hopsToSpoofed = 6 : false

| | | hopsToSpoofed = 7 : false

| | | hopsToSpoofed = 8 : false

| | | hopsToSpoofed = 9 : false

| | | hopsToSpoofed = 10 : false

| | distance = 6 : false

| | distance = 7 : false

| | distance = 8

| | | hopsToSpoofed = 0 : false

| | | hopsToSpoofed = 1 : true

| | | hopsToSpoofed = 2 : false

| | | hopsToSpoofed = 3 : false

| | | hopsToSpoofed = 4 : false

| | | hopsToSpoofed = 5 : false

| | | hopsToSpoofed = 6 : false

| | | hopsToSpoofed = 7 : false

| | | hopsToSpoofed = 8 : false

| | | hopsToSpoofed = 9 : false

| | | hopsToSpoofed = 10 : false

| | distance = 9

| | | hopsToSpoofed = 0 : false

| | | hopsToSpoofed = 1 : true

| | | hopsToSpoofed = 2 : false

| | | hopsToSpoofed = 3 : false

| | | hopsToSpoofed = 4 : false

| | | hopsToSpoofed = 5 : false

| | | hopsToSpoofed = 6 : false

| | | hopsToSpoofed = 7 : false

| | | hopsToSpoofed = 8 : false

| | | hopsToSpoofed = 9 : false

| | | hopsToSpoofed = 10 : false

| | distance = 10 : false

20

Figure 18. OSPFv3MDR Forwarding survivability model.

Figure 19. OSPFv3MDR Spoofing survivability model part 1.

passthrough = true

| isDstBetweenSpoofedAndAttacker = true

| | hopsToSpoofed = 0 : true

| | hopsToSpoofed = 1 : true

| | hopsToSpoofed = 2 : true

| | hopsToSpoofed = 3 : true

| | hopsToSpoofed = 4

| | | fromHop = 1 : false

| | | fromHop = 2 : false

| | | fromHop = 3 : false

| | | fromHop = 4 : true

| | | fromHop = 5 : false

| | | fromHop = 6 : false

| | | fromHop = 7 : false

| | | fromHop = 8 : false

| | | fromHop = 9 : false

| | | fromHop = 10 : false

| | hopsToSpoofed = 5

| | | fromHop = 1 : false

| | | fromHop = 2 : false

| | | fromHop = 3 : false

| | | fromHop = 4 : false

| | | fromHop = 5 : true

| | | fromHop = 6 : false

| | | fromHop = 7 : false

| | | fromHop = 8 : false

| | | fromHop = 9 : false

| | | fromHop = 10 : false

| | hopsToSpoofed = 6

| | | fromHop = 1 : false

| | | fromHop = 2 : false

| | | fromHop = 3 : false

| | | fromHop = 4 : false

| | | fromHop = 5 : false

| | | fromHop = 6 : true

| | | fromHop = 7 : false

| | | fromHop = 8 : false

| | | fromHop = 9 : false

| | | fromHop = 10 : false

| | hopsToSpoofed = 7 : false

| | hopsToSpoofed = 8 : true

| | hopsToSpoofed = 9 : true

| | hopsToSpoofed = 10 : true

| isDstBetweenSpoofedAndAttacker = false

passthrough = true : true

passthrough = false : false

21

Figure 20. OSPFv3MDR Spoofing survivability model part 2.

OSPF spoofing p2

| | destSpoofed = true : true

| | destSpoofed = false

| | | isDstBetweenSpoofedAndAttackergw = true

| | | | hopsToSpoofed = 0 : false

| | | | hopsToSpoofed = 1 : false

| | | | hopsToSpoofed = 2

| | | | | isAttackerBetweenSpoofedAndDstgw = true : true

| | | | | isAttackerBetweenSpoofedAndDstgw = false : false

| | | | hopsToSpoofed = 3

| | | | | isAttackerBetweenSpoofedAndDstgw = true : true

| | | | | isAttackerBetweenSpoofedAndDstgw = false : false

| | | | hopsToSpoofed = 4 : false

| | | | hopsToSpoofed = 5 : false

| | | | hopsToSpoofed = 6 : false

| | | | hopsToSpoofed = 7 : false

| | | | hopsToSpoofed = 8 : false

| | | | hopsToSpoofed = 9 : false

| | | | hopsToSpoofed = 10 : false

| | | isDstBetweenSpoofedAndAttackergw = false : false

passthrough = false

| destSpoofed = true

| | isDstBetweenSpoofedAndAttackergw = true : false

| | isDstBetweenSpoofedAndAttackergw = false

| | | fromHop = 1 : false

| | | fromHop = 2 : true

| | | fromHop = 3

| | | | distance = 1 : false

| | | | distance = 2 : false

| | | | distance = 3 : false

| | | | distance = 4 : true

| | | | distance = 5 : true

| | | | distance = 6 : true

| | | | distance = 7 : false

| | | | distance = 8 : false

| | | | distance = 9 : false

| | | | distance = 10 : false

| | | fromHop = 4 : false

| | | fromHop = 5 : false

| | | fromHop = 6 : false

| | | fromHop = 7 : false

| | | fromHop = 8 : false

| | | fromHop = 9 : false

| | | fromHop = 10 : false

| destSpoofed = false : false

22

8. Conclusions and Future Work

The work provided in this report has benefits in fundamental processes of survivability analysis.

Specifically, this report shows that it is possible to predict the survivability of network flows,

unlike work in the past that focuses only on throughput totals. Experiment results show that by

representing a network from an attacker’s perspective, link loss due to spoofing and data

forwarding attacks can be accurately predicted.

The following are areas for future work. One important endeavor is determining whether the

methods used here will apply to mobile nodes. This seems likely since during a mobile scenario,

nodes form topologies that can be formatted into the network representation described in the

Network Representation (section 5). Next, testing will be conducted with other ad-hoc protocols

such as ad hoc on-demand distance vector (AODV), routing information protocol (RIP), and

better approach to mobile ad hoc network (BATMAN) along with defense mechanisms. Whether

it is possible to predict numeric impacts such as delay, missed packets, time until impact,

recovery after attack, and others will be determined.

This work used TCP and UDP packets, but in the future the effects of different traffic will be

investigated. Measuring the survivability given a wider range of attacks, such as route fabrication

and multi-attacker scenarios, is planned. Future work will determine whether the impact of these

attacks can be accurately predicted. To improve the accuracy of the methods, layer-1 and layer-2

emulation will be tested using such tools as EMANE and the available plugins for

communication loss and radio models.

As many systems currently use OPNet for network simulation, a future engineering effort will

convert OPNet scenarios into a format that can be read by CORE, hence allowing the use of the

survivability analysis described in this report.

While this work focuses on malicious nodes, it does not take into account probabilities of nodes

becoming targets. Future work will augment attack graph and attack grammar data to provide

this feature.

23

9. References

1. Yi, J. http://www.jiaziyi.com/documents/20080229_A_Survey_on_the_Applications_of_

MANET.pdf, A Survey on the Applications of MANET. Architecture.

2. Wu, B.; Chen, J.; Wu, J.; Cardei, M. A Survey of Attacks and Countermeasures in Mobile

Ad Hoc Networks. Signals and Communication Technology, Special Issue: Wireless Network

Security 2007, 103–135.

3. Ambhaikar, A.; Mitra, D.; Deshmukh, R. Performance of MANET Routing Protocol for

Improving Scalability. International Journal of Advanced Engineering Application 2011,

January, 15–18.

4. Britton, M.; Coyle, A. Performance Analysis of the BATMAN Wireless Ad-Hoc Network

Routing Protocol with Mobility and Directional Antennas; SANLAB Technical Report;

2011.

5. Tuteja, A.; Gujral, R.; Thalia. S. Comparative Performance Analysis of DSDV, AODV and

DSR Routing Protocols in MANET using NS2. International Conference on Advances in

Computer Engineering (ACE), Taipei, Taiwan, November 2010.

6. Andel, T. R.; Yasinsac, A. Surveying Security Analysis Techniques in MANET Routing

Protocols. IEEE Communications Surveys Tutorials 2007, 9, 70–84.

7. Hu, Y. C.; Perrig, A.; Johnson, D. B. Ariadne: A Secure On-Demand Routing Protocol for

Ad Hoc Networks. Wireless Networks 2005, 11 (1–2), 21–38.

8. Hu, Y. C.; Johnson, D. B.; Perrig, A. 8: Secure Efficient Distance Vector Routing for Mobile

Wireless Ad Hoc Networks. Ad Hoc Networks 2003, 1 (1), 175–192.

9. Perrig, A.; Canetti, R.; Tygar, J. D.; Song, D. The 9 Broadcast Authentication Protocol.

CryptoBytes, 5, (2 – Summer/Fall).

10. Lu, S.; Li, L.; Lam, K. Y.; Jia, L. 10: A MANET routing protocol that can withstand black

hole attack. International Conference on Computational Intelligence and Security, Bejing,

China, December 11–14, 2009, 421–425.

11. Moustafa, M. A.; Youssef, M. A.; El-Derini, M. N. 11: A Multipath Secure Reliable Routing

Protocol For WSNs. International Conference on Computer Systems and Applications

(AICCSA), Sharm El-Sheikh, Egypt, December 27–30, 2011.

12. Stavrou, E.; Pitsillides, A. A Survey On Secure Multipath Routing Protocols in WSNs.

Computer Networks 2010, 54 (13), 2215–2238.

24

13. Parsons, M.; Ebinger, P. Performance Evaluation of the Impact of Attacks on mobile Ad-Hoc

networks. International Symposium on Reliable Distributed Systems, Niagra Falls, NY,

September 27–30, 2009.

14 Kiddie, P. D. Decentralised Soft-Security in Distributed Systems. Ph.D. Thesis, University of

Birmingham, 2011.

15. Ochola, E. O.; Eloff, M. M. A Review of Black Hole Attack on AODV Routing in MANET.

Information Security, South Africa, 2011.

16. Andel, T. R.; Yasinsac, A. On the Credibility of MANET Simulations. IEEE Computer

2006, 39 (7).

17. Lima, M.; Dos Santos, A.; Pujolle, G. A Survey of Survivability in Mobile Ad Hoc

Networks. Communications Surveys & Tutorials 2009, 11 (1), 66–77.

18. Ellison, R.; Fisher, D.; Linger, R.; Lipson, H.; Longstaff, T.; Mead, N. Survivable Network

Systems: An Emerging Discipline ; cmu/sei-97-tr-013; Software Engineering Institute,

Carnegie Mellon University: Pittsburgh, PA, 1997.

19. Kim, K.; Roh, B.; Ko, Y. B.; Choi, W. J.; Son, E. S. Survivability Measure For Multichannel

MANET-Based Tactical Networks, Advanced Communication Technology, Seoul, Korea,

13–16 February 2011.

20. Wang, T.; Huang, C. H.; Xiang, K.; Zhou, K. X. Survivability Evaluation for MANET Based

on Path Reliability. Networks Security Wireless Communications and Trusted Computing.

Wuhan, Hubei, China, April 24–25, 2010, 1, 378–381.

21. Wang, J.; Yu, Z. Research on Quantitative Analysis Model of MANET Survivability.

Electrical and Control Engineering, Yichang, China, September 16–18, 2011.

22. Wang, T.; Huang, C. H. A Neural Network Model for Evaluating Mobile Ad Hoc Wireless

Network Survivability. Advances in Neural Networks, Shanghai, China, June 2010.

23. Ahrenholz, J.; Danilov, C.; Henderson, T. R.; Kim, J. H. CORE: A Real-Time Network

Emulator. Military Communications Conference, San Diego, CA, November 17–19, 2008.

24. Jain, K.; Roy-Choudhary, A.; Somasundaram, K. K.; Wang, B.; Baras, J. S. Studying Real-

time Traffic in Multi-hop Networks Using the EMANE Emulator: Capabilities and

Limitations. Digital Repository at the University of Maryland (TR_2011-01), 2011.

25. http://labs.cengen.com/emane/download/addons/commeffect.html (accessed February 14,

2012).

26. http://cs.itd.nrl.navy.mil/work/mgen/ (accessed February 14, 2012).

25

27. Hagberg, A.; Schult, D.; Swart, P. NetworkX Library developed at the Los Alamos National

Laboratory Labs Library (DOE) by the University of California. Code available at

https://networkx.lanl.gov (accessed February 14, 2012).

28. Hall, Mark; Frank, Eibe; Holmes, Geoffrey; Pfahringer, Bernhard; Reutemann, Peter; Witten,

Ian H. The WEKA Data Mining Software: An Update. SIGKDD Explorations 2009, 11 (1),

11.

26

List of Symbols, Abbreviations, and Acronyms

AODV ad hoc on-demand distance vector

BATMAN better approach to mobile ad hoc network

CORE common open research emulator

EMANE extendable mobile ad hoc network emulator

HNA host network announcement

IP Internet Protocol

NRLOLSR Naval Research Laboratory optimized link state routing

OLSR optimized link state routing

RIP routing information protocol

TCP transmission control protocol

UDP user datagram protocol

27

 1 ADMNSTR

 ELEC DEFNS TECHL INFO CTR

 ATTN DTIC OCP

 8725 JOHN J KINGMAN RD STE 0944

 FT BELVOIR VA 22060-6218

 1 CD US ARMY RSRCH LAB

1 WORD MELE ASSOCIATES

VERSION ATTN RDRL SLE E D NEVAREZ

 BLDG 1622 RM 216

 WHITE SANDS MISSILE RANGE NM 88002-5501

 1 CD US ARMY RSRCH LAB

 1 HC ATTN RDRL SLE I J ACOSTA

 BLDG 1646

 WHITE SANDS MISSILE RANGE NM 88002-5513

 3 HCs US ARMY RSRCH LAB

 ATTN IMNE ALC HRR MAIL & RECORDS MGMT

 ATTN RDRL CIO LL TECHL LIB

 ATTN RDRL CIO LT TECHL PUB

 ADELPHI MD 20783-1197

 1 HC DANIEL LANDIN

 ARMY RESEARCH LABORATORY

 ATTN RDRL SLE I

 BLDG 1624

 WSMR NM 88002-5513

Total: 9 (1 PDF, 2 CDs, 1 WORD VERSION, 5 HCs)

28

INTENTIONALLY LEFT BLANK.

